If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+3=33
We move all terms to the left:
3n^2+3-(33)=0
We add all the numbers together, and all the variables
3n^2-30=0
a = 3; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·3·(-30)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*3}=\frac{0-6\sqrt{10}}{6} =-\frac{6\sqrt{10}}{6} =-\sqrt{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*3}=\frac{0+6\sqrt{10}}{6} =\frac{6\sqrt{10}}{6} =\sqrt{10} $
| |q–755|=0 | | -0.8x=-0.72 | | 6000.04t=12000 | | 12/3a=-15 | | 17.5=-4x+5x | | x*2+13x+36=0 | | 5+s12=4.75 | | 12x+3+12x+3+4x+4x=0 | | 8x+32-2x=48+4x-8 | | 0.5x+2(3/4x-1)=1/4x+6 | | X^2+2x+20=-9 | | 6x+5(3x-22)=79 | | 9(x-3)-2(x+4)=10 | | 9x-4=6x+10 | | 3x—12=3(x+1)-15 | | 6=j+8 | | -4=-2x-4(-2x-17) | | 52-(x2)+x=10 | | -4.22+2.97=-5.3x | | 27=-2(3x-8) | | 5+3(x+2)=2x-14 | | -9x-5=-7x-11 | | -1.05y=0.210 | | 2n-3=53 | | 17+b=24 | | .5x+.3=10 | | 720=4(x+16) | | 20=-3(-5-2x) | | -5x-13=-13-4x | | Y=-4.9x^2+50 | | -10=2d-⅔ | | 12y=0.36 |